51 research outputs found

    A new view into prokaryotic cell biology from electron cryotomography

    Get PDF
    Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (~4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future

    The Caltech Tomography Database and Automatic Processing Pipeline

    Get PDF
    Here we describe the Caltech Tomography Database and automatic image processing pipeline, designed to process, store, display, and distribute electron tomographic data including tilt-series, sample information, data collection parameters, 3D reconstructions, correlated light microscope images, snapshots, segmentations, movies, and other associated files. Tilt-series are typically uploaded automatically during collection to a user’s “Inbox” and processed automatically, but can also be entered and processed in batches via scripts or file-by-file through an internet interface. As with the video website YouTube, each tilt-series is represented on the browsing page with a link to the full record, a thumbnail image and a video icon that delivers a movie of the tomogram in a pop-out window. Annotation tools allow users to add notes and snapshots. The database is fully searchable, and sets of tilt-series can be selected and re-processed, edited, or downloaded to a personal workstation. The results of further processing and snapshots of key results can be recorded in the database, automatically linked to the appropriate tilt-series. While the database is password-protected for local browsing and searching, datasets can be made public and individual files can be shared with collaborators over the Internet. Together these tools facilitate high-throughput tomography work by both individuals and groups

    Electron Cryotomography of Bacterial Secretion Systems

    Get PDF
    In biology, function arises from form. For bacterial secretion systems, which often span two membranes, avidly bind to the cell wall, and contain hundreds of individual proteins, studying form is a daunting task, made possible by electron cryotomography (ECT). ECT is the highest-resolution imaging technique currently available to visualize unique objects inside cells, providing a three-dimensional view of the shapes and locations of large macromolecular complexes in their native environment. Over the past 15 years, ECT has contributed to the study of bacterial secretion systems in two main ways: by revealing intact forms for the first time and by mapping components into these forms. Here we highlight some of these contributions, revealing structural convergence in type II secretion systems, structural divergence in type III secretion systems, unexpected structures in type IV secretion systems, and unexpected mechanisms in types V and VI secretion systems. Together, they offer a glimpse into a world of fantastic forms—nanoscale rotors, needles, pumps, and dart guns—much of which remains to be explored

    Plasma membrane damage removal by F-actin-mediated shedding from repurposed filopodia

    Get PDF
    Repairing plasma membrane damage is vital to eukaryotic cell survival. Membrane shedding is thought to be key to this repair process, but a detailed view of how the process occurs is still missing. Here we used electron cryotomography to image the ultrastructural details of plasma membrane wound healing. We found that filopodia-like protrusions are built at damage sites, accompanied by retraction of neighboring filopodia, and that these repurposed protrusions act as scaffolds for membrane shedding. This suggests a new role for filopodia as reservoirs of membrane and actin for plasma membrane damage repair. Damage-induced shedding was dependent on F-actin dynamics and Myo1a, as well as Vps4B, an important component of the ESCRT machinery. Thus we find that damage shedding is more complex than current models of simple vesiculation from flat membrane domains. Rather, we observe structural similarities between damage-mediated shedding and constitutive shedding from enterocytes that argue for conservation of a general membrane shedding mechanism

    ETDB-Caltech: a blockchain-based distributed public database for electron tomography

    Get PDF
    Three-dimensional electron microscopy techniques like electron tomography provide valuable insights into cellular structures, and present significant challenges for data storage and dissemination. Here we explored a novel method to publicly release more than 11,000 such datasets, more than 30 TB in total, collected by our group. Our method, based on a peer-to-peer file sharing network built around a blockchain ledger, offers a distributed solution to data storage. In addition, we offer a user-friendly browser-based interface, https://etdb.caltech.edu, for anyone interested to explore and download our data. We discuss the relative advantages and disadvantages of this system and provide tools for other groups to mine our data and/or use the same approach to share their own imaging datasets

    Structural conservation of chemotaxis machinery across Archaea and Bacteria

    Get PDF
    Chemotaxis allows cells to sense and respond to their environment. In Bacteria, stimuli are detected by arrays of chemoreceptors that relay the signal to a two-component regulatory system. These arrays take the form of highly stereotyped super-lattices comprising hexagonally packed trimers-of-receptor-dimers networked by rings of histidine kinase and coupling proteins. This structure is conserved across chemotactic Bacteria, and between membrane-bound and cytoplasmic arrays, and gives rise to the highly cooperative, dynamic nature of the signalling system. The chemotaxis system, absent in eukaryotes, is also found in Archaea, where its structural details remain uncharacterized. Here we provide evidence that the chemotaxis machinery was not present in the last archaeal common ancestor, but rather was introduced in one of the waves of lateral gene transfer that occurred after the branching of Eukaryota but before the diversification of Euryarchaeota. Unlike in Bacteria, the chemotaxis system then evolved largely vertically in Archaea, with very few subsequent successful lateral gene transfer events. By electron cryotomography, we find that the structure of both membrane-bound and cytoplasmic chemoreceptor arrays is conserved between Bacteria and Archaea, suggesting the fundamental importance of this signalling architecture across diverse prokaryotic lifestyles

    Simulations suggest a constrictive force is required for Gram-negative bacterial cell division

    Get PDF
    To divide, Gram-negative bacterial cells must remodel cell wall at the division site. It remains debated, however, whether this cell wall remodeling alone can drive membrane constriction, or if a constrictive force from the tubulin homolog FtsZ is required. Previously, we constructed software (REMODELER 1) to simulate cell wall remodeling during growth. Here, we expanded this software to explore cell wall division (REMODELER 2). We found that simply organizing cell wall synthesis complexes at the midcell is not sufficient to cause invagination, even with the implementation of a make-before-break mechanism, in which new hoops of cell wall are made inside the existing hoops before bonds are cleaved. Division can occur, however, when a constrictive force brings the midcell into a compressed state before new hoops of relaxed cell wall are incorporated between existing hoops. Adding a make-before-break mechanism drives division with a smaller constrictive force sufficient to bring the midcell into a relaxed, but not necessarily compressed, state

    The structural complexity of the Gammaproteobacteria flagellar motor is related to the type of its torque-generating stators

    Get PDF
    The bacterial flagellar motor is a cell-envelope-embedded macromolecular machine that functions as a propeller to move the cell. Rather than being an invariant machine, the flagellar motor exhibits significant variability between species, allowing bacteria to adapt to, and thrive in, a wide range of environments. For instance, different torque- generating stator modules allow motors to operate in conditions with different pH and sodium concentrations and some motors are adapted to drive motility in high-viscosity environments. How such diversity evolved is unknown. Here we use electron cryo-tomography to determine the in situ macromolecular structures of the flagellar motors of three Gammaproteobacteria species: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis MR-1, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the stator system of the motor and its structural complexity. Motors with a single H+-driven stator system have only the core P- and L-rings in their periplasm; those with dual H+-driven stator systems have an extra component elaborating their P-ring; and motors with Na+- (or dual Na+-H+)- driven stator systems have additional rings surrounding both their P- and L-rings. Our results suggest an evolution of structural complexity that may have enabled pathogenic bacteria like L. pneumophila and P. aeruginosa to colonize higher-viscosity environments in animal hosts
    • …
    corecore